Click here to close now.


You will be redirected in 30 seconds or close now.

ColdFusion Authors: Yakov Fain, Maureen O'Gara, Nancy Y. Nee, Tad Anderson, Daniel Kaar

Related Topics: Java IoT, Microservices Expo, ColdFusion, Microsoft Cloud, IoT User Interface

Java IoT: Article

Load Testing in Clustered Environments

Clustered Environments: Load Testing for Architectural Validation (P.S. Don’t Extrapolate!)

Load and performance testing web applications will allow you to determine whether or not your deployment will require a clustered environment. When the test results show that the current throughput is restricted by the capacity of the server but target workloads are not yet met, this is a situation where you can achieve higher scalability by implementing clusters to your environment. Clustering achieves higher scalability by introducing more servers or nodes to expand the capacity of the environment. Obviously, the benefits of adding hardware include higher capacity, reliability, availability, and scalability. But also consider that clustering also adds complexity to your deployment by requiring added maintenance and an increased need for deployment/upgrade automation. To ensure quality of the environment you must always validate your clustered environment and prove out the increased scalability. Use a methodical performance testing approach. Don't try to extrapolate! It's not as easy as "3 nodes in a cluster will support 3x the workload."

Why Cluster?
An efficiently tuned deployment will, in turn, display an efficient use of server resources (memory, CPU, i/o, etc). Using a cluster increases the number of servers and distributes the workload amongst several servers. This even distribution of the workload can dramatically increase scalability. Not only can this improve the end user experience by reaching higher workloads with predictable response times but it can increase the reliability and stability of the deployment. The cluster acts as a single server so the loss or shutdown of any of the nodes in the cluster will not result in loss of sessions or application data. In the end, the user experience is less frequently interrupted and isn't affected by a single maxed out server or a loss of a server.

Tuning Tips
When performance or load testing your application uncovers a clear need to introduce clusters or farms to support the target workload, you will want to take into account the following considerations: First you should configure the cluster efficiently for internal maintenance such as data synchronization and heartbeat communications. User sessions which live in memory are more quickly failed over to another node in the cluster instead of persisting them to the database. However, writing the sessions to disk is more permanent which may have its own advantages. Make sure you have tested the performance prices for data synchronization and heartbeat communications. The goal is to configure the cluster to increase scalability with as little overhead as possible.

Load Balancers
Load balancers are generally placed out in front of the clusters. These load balancers can be a software solution or a hardware solution. Their job is to distribute the load evenly to the nodes in the cluster. Just as important, LB's reroute traffic when one node of the cluster goes down. This allows for the "transparency" of several servers acting as one. There are several more mature algorithms for distribution than traditional "round robins." Smarter LB's takes into account the CPU and resource usage and overall load of each server and their job is to direct the request to the least loaded server. The number of active users doesn't always equate to more resources being actively used, rather it depends on the types of transactions being executed - lightweight vs. expensive transactions. Smart LB's will detect workload and direct incoming traffic based on resource usage. Often LB's will use sticky sessions based on the client's cookie and/or IP address to route subsequent requests to the same node of cluster where the user session lives. Whenload testing these types of environments, it's a requirement to have a load tool which supports IP Spoofing. This is used to generate the load of many virtual users using multiple IP addresses all from a single machine. Otherwise, the total load would go to a single cluster node.

Types of Clustering
Clustering can be achieved using a few common techniques. Vertical clustering adds capacity to the deployment by installing multiple nodes of a cluster on a single machine. With this approach you must take into consideration the physical limitations of that machine (CPU, memory, i/o) and be careful not over utilize resources; otherwise adding more nodes becomes pointless due to saturation. Horizontal clusters refer to deploying more physical machines. With this approach, each physical machine can run one or more of the nodes of the cluster. Cloud bursting is a way of having a node both within the LAN and a node in the Cloud to be turned "on" during high volume usage or be strategically placed in different geographical locations. The appropriate technique really depends on the specifics of your environment. If you need more capacity and you have beefy infrastructure servers but do not have enough web servers or app servers to fully utilize the underlying hardware, choose the vertical clustering approach by adding more nodes to the same machine. On the other hand, if more physical resources are needed to handle the workload, then build out a horizontal cluster by adding more hardware and deploying more nodes.

How to Load Test a Cluster?
It's important to take a methodical approach to load testing a clustered environment. Load patterns such as ramping tests allow you to identify the current capacity as well as increased scalability as you add more nodes to the cluster. Remember that doubling the number of nodes in a cluster does not equate to doubling its capacity. Many components impact its performance gain such as the communications between the nodes used to just make the cluster work properly. The resource cost increases dramatically with the number of nodes. Capacity is relative and is dependent on myriad other components within the infrastructure. For example, adding another node to the cluster may give the application layer 2x the throughput (although this is not really possible due to "housekeeping" from internal administration overhead to maintain that cluster), but let's say the single webserver out front is already using all its worker threads, then requests will be queued while waiting for a thread to become available and overall throughput will not increase. Only through the analysis of load test results will you completely understand the increased scalability effects of a cluster. Consider another scenario: You have identified a need for building out a cluster of application servers, however you deploy too many nodes resulting in a backlog of requests on the shared database. Performance and load testing will uncover this vulnerability and many other potential scenarios that could otherwise go undetected. Having a comparison analysis feature built right into the load tool will allow you to run tests back to back, after turning on/off nodes in the cluster, and quickly visualize the differences. Also, having the tool with a built-in cloud load generation feature will save time and money setting up and maintaining the performance architecture environment, especially for high load tests.

The Right Approach?
Adding clustering to a deployment allows a web application to achieve higher workloads and gives the advantage of higher availability. However, you must conduct performance tests in order to build out an efficient cluster which meets your goals. Don't forget to weigh the benefits vs. added maintenance complexity/cost. Clusters require a high level of expertise to implement and maintain so they aren't the best solution in every situation. Make sure all moving parts are documented and insist on a complete architectural diagram for future systems administrators (diagrams to include hierarchical transaction pathways as well as location of each node in the cluster including the admin consoles). In the end it's all about delivering the best possible end user experience and in many cases clustering is an excellent solution for increasing scalability of your web deployments.

More Stories By Rebecca Clinard

Rebecca Clinard is a Senior Performance Engineer at Neotys, a provider of load testing software for Web applications. Previously, she worked as a web application performance engineer for Bowstreet, Fidelity Investments, Bottomline Technologies and Timberland companies, industries spanning retail, financial services, insurance and manufacturing. Her expertise lies in creating realistic load tests and performance tuning multi-tier deployments. She has been orchestrating and conducting performance tests since 2001. Clinard graduated from University of New Hampshire with a BS and also holds a UNIX Certificate from Worcester Polytechnic Institute.

@ThingsExpo Stories
Electric power utilities face relentless pressure on their financial performance, and reducing distribution grid losses is one of the last untapped opportunities to meet their business goals. Combining IoT-enabled sensors and cloud-based data analytics, utilities now are able to find, quantify and reduce losses faster – and with a smaller IT footprint. Solutions exist using Internet-enabled sensors deployed temporarily at strategic locations within the distribution grid to measure actual line loads.
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, will explore the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll share tips on how to speed up business initiatives, harness Big Data and remain one step ahead by apply...
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
SYS-CON Events announced today that Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, will keynote at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...
Mobile messaging has been a popular communication channel for more than 20 years. Finnish engineer Matti Makkonen invented the idea for SMS (Short Message Service) in 1984, making his vision a reality on December 3, 1992 by sending the first message ("Happy Christmas") from a PC to a cell phone. Since then, the technology has evolved immensely, from both a technology standpoint, and in our everyday uses for it. Originally used for person-to-person (P2P) communication, i.e., Sally sends a text message to Betty – mobile messaging now offers tremendous value to businesses for customer and empl...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
The broad selection of hardware, the rapid evolution of operating systems and the time-to-market for mobile apps has been so rapid that new challenges for developers and engineers arise every day. Security, testing, hosting, and other metrics have to be considered through the process. In his session at Big Data Expo, Walter Maguire, Chief Field Technologist, HP Big Data Group, at Hewlett-Packard, will discuss the challenges faced by developers and a composite Big Data applications builder, focusing on how to help solve the problems that developers are continuously battling.