Click here to close now.




















Welcome!

You will be redirected in 30 seconds or close now.

ColdFusion Authors: Yakov Fain, Maureen O'Gara, Nancy Y. Nee, Tad Anderson, Daniel Kaar

Related Topics: ColdFusion

ColdFusion: Article

Mach-II

Mach-II

With the release of the MX version, ColdFusion has moved from its strict procedural programming background toward object-oriented design and programming. This move has evoked both hope and fear in developers, some welcoming the decidedly new concepts of object orientation (OO) and some dreading that they will lose the language they love.

Within the Fusebox community, the introduction of ColdFusion components (CFCs) has stirred a great deal of interest: Would Fusebox leverage these new capabilities and, if so, how? Almost a year ago, we - along with John Quarto-vonTivadar - began work on a new version of Fusebox that would leverage the new capabilities of MX. At once there was a good deal of speculation on what "Fusebox MX" would look like. Would Fusebox become an OO framework? Would developers have to understand polymorphism and inheritance to use it? This article answers these questions and will, we hope, inspire people to look at a new, unashamedly object-oriented framework called Mach-II. In next month's issue of ColdFusion Developer's Journal, we'll explore Fusebox 4 - the worthy successor to Fusebox 3.

ColdFusion's initial appeal was to "Webmasters" who wanted to make their sites more dynamic - and it succeeded admirably. But just as the term "Webmaster" is an anachronism, the call for more dynamic Web sites was succeeded by the need for true Web applications.

As these applications became more involved and more ambitious in scope, ColdFusion developers discovered that even a thorough knowledge of tags and functions was just not enough. Realizing that the same problems presented themselves again and again, a group of developers wondered if these problems couldn't be solved - or at least ameliorated - by building some sort of framework on which Web-based applications could be developed. These visionaries traded ideas and code over e-mail. Ideas evolved and Fusebox was thus born, and it too succeeded admirably.

The Rise of OO
When ColdFusion MX was released, it generated a great deal of interest. For many developers, the most interesting aspect of the new release was the inclusion of a new encapsulation mechanism, the ColdFusion component (CFC). CFCs promised ColdFusion developers the ability to move from writing purely procedural code to object-oriented code. Macromedia began touting CFCs as "objects without all the fussiness."

For some developers, this represented a profound "this changes everything" shift - not without reason. Object orientation represents a shift in thinking. The procedural approach views each problem as a series of actions that must be taken in the correct order to achieve a desired result. Data is separate from functions. The object-oriented approach identifies separate, encapsulated components ("objects") in which data and functions are combined.

Fusebox represents a procedural approach to building applications. The object-oriented approach is very different from the procedural approach. Solutions result from first building classes that provide abstracted and simplified models of real-world counterparts. For example, a billing system might have classes for Invoice, Receipt, Customer, etc. When the application is run, instances of these classes (objects) are created. The running application then resembles an extended conversation between objects, with different objects sending messages to other objects to request information or ask that a service of some type be performed.

Shortly after the release of CFCs, we wrote "Discovering CFCs" (Techspedition Press, 2002), in which we explored in what ways CFCs were - and were not - truly object oriented. And since we were both involved in the Fusebox world, we decided to write a new version of Fusebox that would make use of the new capabilities of CFCs. We labeled the initiative, seemingly sensibly enough, Fusebox MX.

When we began talking about it openly, we heard from people who asked whether, with CFCs, the need for Fusebox was gone altogether? "Why do we need Fusebox when we have objects?" they asked. As we saw it, there were three ways to answer this question.

First, as we showed in our book, there were aspects of CFCs that simply could not be squared with an object-oriented approach. Second, if objects obviated the need for frameworks, why would Java, a language with first-class objects, have strong communities for over a dozen framework projects? Finally, however helpful individual components might be, they didn't address the issue of an underlying architecture. In short, we felt that Fusebox remained a valuable framework for the ColdFusion community.

OO and You
But a funny thing happened on the way to Fusebox MX. We began to ask questions about the appropriate software architecture on which to build the framework. Would Fusebox MX essentially be Fusebox - doing little more than adding components into a still procedural toolkit? That would be the easiest change for existing Fuseboxers to get used to, but would be little more than adding "super custom tags" to procedural code.

We felt strongly that the continued reliance on procedural code would put ColdFusion programmers at risk. Over the past 10 years, essentially the current lifespan of ColdFusion, a revolution has taken place. This revolution was not political, but technological, and it represented the ascension of object orientation as the dominant software construction paradigm. While languages such as Java, C#, Delphi, Visual Basic .NET, and Ruby (to name only a few) represented the new guard in this revolution, ColdFusion - and Fusebox - remained solidly procedural. Developers using ColdFusion simply didn't need to come to terms with object orientation.

Being involved in the Fusebox community, we felt a duty to ensure that Fuseboxers would not be using a proprietary framework cut off from the bigger IT world. We decided to rethink everything about Fusebox - including its architecture.

A Focus on Architecture
For many developers, the idea of "software architecture" simply means "how I put my application together." While obviously inexact, that definition of architecture was reflected by the great architect, Ludwig Mies van der Rohe, who wrote: "Whenever someone puts two bricks together, there architecture begins."

In practice, software architectures are commonly treated as a collection of components and connectors. Components are the system's functional elements, such as a shopping cart, a contact manager, or a database. Connectors define the protocols for communication between components. Examples of connectors include method calls, SQL queries, and HTTP requests. The architecture chosen for a system determines the vocabulary of components and connectors that can be used as well as the set of constraints defining how they are combined.

The choice of a particular software architecture is made on the basis of the goals of the designers, which is to say that there is no single-fit, perfect architecture. Over time, several different software architectural styles have risen to the fore, each with its own strengths and weaknesses. Our choice of a software architecture for a new Fusebox would then depend on what we wanted to accomplish. To determine this, we examined what others had come to rely on with Fusebox.

Fundamental Fusebox Goals
We began to speak with other Fuseboxers: What was it they most valued about Fusebox? From many voices, a few themes emerged. What Fuseboxers wanted from Fusebox was:

  • The ability to more rapidly develop applications: Developers voicing this concern told us that they were being asked to develop applications without sufficient time or resources. They were far less concerned about "future-proofing" their careers by learning OO than they were simply about getting out from under the current backlog of work.
  • The ability to help manage complexity: Simple apps are...well...simple, but they seldom remain simple. We've often noted that the most dangerous words clients can utter are, "You know what would be nice...." Despite our best efforts at requirements gathering, new requirements evolve and suddenly a simple application becomes more complex. Nor does ongoing development ever stop. Each new change becomes the basis for a new round of "improvements."
  • The ability to do effective team development: In corporate environments especially, application development is done by teams. Each member has unique strengths to offer, but very few have all the needed skills to solely craft an entire Web application. Any change to the current version of Fusebox needed to ensure that the support for team development was not diminished.
  • The ability to document an application: What developer wants to be forever chained to an application he or she has built? Yet without good documentation (and that meant documentation that was simple and easy to produce), developers were locked into maintaining their existing applications. It was simply too difficult for someone else to take over the responsibility for the application's maintenance.

    Our own concerns centered on software maintenance. It is an often overlooked fact that between 70-90% of the life-cycle cost of an application is spent on maintenance. A framework that misses this point, by treating maintenance as an afterthought, gives away the enormous leverage that cost and time savings in maintenance can offer adopters of the framework. And if saving money is not a worthy enough goal, surely saving the sanity of coders who must work on poorly maintained code is. Thus, software maintainability became one of our chief goals.

    Maintainability, we knew, was intimately tied to code reusability, since the same problem that causes an application to be difficult to maintain causes the components to be difficult to reuse - namely, the tight coupling between components.

    Excessive dependencies between code components adversely affects all. Therefore, we felt that by tackling software maintainability, we would increase the chances for significant code reuse.

    Cohesion and Coupling
    Two metrics important for consideration in defining the publicly exposed interfaces of an architecture's components and connectors are a system's cohesion and coupling. Cohesion is the measure of the degree to which a component has a singular purpose. The greater cohesion a component exhibits, the more focused the component and the fewer the assumptions about contexts for reuse.

    Coupling is the degree of interdependence between components. The less a component relies on other components (the looser its coupling), the more independent and reusable it is. Maximized cohesion (simple components) and minimized coupling (fewer connectors) are hallmarks of a flexible, maintainable architecture.

    One of the more broadly accepted architectural styles in software engineering is known as implicit invocation. Implicit invocation architectures intrigued us. Event-based, implicit invocation is an example of a well-crafted architectural style with high cohesion and loose coupling. As such, it is one of the more broadly accepted architectural styles in software engineering. Examples of implicit invocation systems abound, including virtually all modern operating systems, integrated development environments, and database management systems.

    Events and Listeners
    Implicit invocation systems rely on the idea of events and listeners. Events are triggered whenever the system needs to do something, such as respond to an incoming request. Events can take many forms across different types of implementations; often for object-based systems, an event is an object whose properties contain any contextual information needed to process the event (similar to how an HTTP request carries with it all its form and query-string variables).

    Listeners are business logic components that are registered with the system. When an event is announced, the system finds the listeners registered for that event and announces the new event to those listeners. Listeners fit the same criteria for components that we've already discussed - they are functional modules of the system. Components that wish to act as listeners are registered to listen for certain events at configuration time (by specification in an XML file, for instance). When an event is triggered, all registered listeners of that event are passed the event by means of a dynamically determined method call. In this way, functions are implicitly invoked. This process of notifying listeners of an event is called event announcement.

    Events and listeners can themselves trigger other events. Let's consider how a common login/authentication scenario can be represented in terms of events and listeners. In this example, a login form is filled out by a user and then submitted. The incoming HTTP request triggers the creation of a LoginEvent, and the system populates the event with information in the request.

    Next, the system determines the listeners for LoginEvent; in this case there is only one - the AuthenticationListener. Determined by a configuration file, the system invokes the AuthenticationListener's tryLogin() method, passing to it the event. Based on information in the event, the tryLogin() method will seek to authenticate the user. If the authentication succeeds, a new LoginAcceptedEvent is triggered. If authentication fails, a new LoginFailedEvent is triggered. The cycle then continues, with any listeners of the new event being notified (see Figure 1).

     

    Loosely coupled components work together, but do not rely on each other to do their own jobs. The interaction policy is separate from the interacting components, providing flexibility. Components can be introduced into a system simply by registering them for events of the system, aiding greatly in reusability and maintainability. Introduction of new components does not require change in other component interfaces, providing scalability as new features are added. Overall, implicit invocation eases system evolution.

    Rather than starting with the idea of making a Fusebox for ColdFusion MX, we began with the idea of making a true, object-oriented framework that would meet the goals we adopted. Work on the framework proceeded without regard to a specific language. Instead, we wanted to ensure that this new framework would be adaptable to any language that implemented object-oriented principles. Only after all architectural decisions were made did we set about the task of implementing it in ColdFusion, where we found CFCs provided us the encapsulation we needed.

    The end results have surprised and gratified us. We find that the system offers enormous flexibility. New functionality (a.k.a., "You know what would be nice...") is often as easy as adding a new listener to the system. Loose coupling ensures that other components do not need to be altered. We found that the implementation of the Model-View-Controller design pattern was a natural fit with an event-based invocation architecture. Finally, we found that the system could easily work with Web services, Flash remoting, Enterprise JavaBeans, and more.

    Only one problem remained: What should we call this new framework? We began this journey with the idea that we were creating a "Fusebox MX". What emerged was something different and better than what we had hoped for. But was it Fusebox MX? In the end, we decided that a different name would better serve all involved. Certainly, the underlying architecture had little in common with Fusebox. Better, we felt, to give it a separate name. Fusebox 4 would be the successor to Fusebox 3, and would continue to offer enormous benefits to procedural programmers.

    After too many late-night discussions (for some reason, naming something takes on enormous importance!), we decided that we wanted the framework name to reflect the fact that it was meant to help developers break the procedural barrier. Mach-II was thus born. Next month, we'll explore the inner workings of Mach-II. In the meantime, we invite developers who want to use a powerful, flexible, object-oriented framework to build robust and maintainable applications to explore Mach-II at www.mach-ii.com.

  • More Stories By Hal Helms

    Hal Helms is a well-known speaker/writer/strategist on software development issues. He holds training sessions on Java, ColdFusion, and software development processes. He authors a popular monthly newsletter series. For more information, contact him at hal (at) halhelms.com or see his website, www.halhelms.com.

    More Stories By Ben Edwards

    Ben Edwards is a Sun Certified Java Programmer and holds a degree in
    computer science from the Georgia Institute of Technology. He
    currently trains developers on software engineering practices
    focusing on Java, object-oriented programming, and software
    architectures. Ben is also cofounder of the Mach-II project.

    Comments (4) View Comments

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    Most Recent Comments
    Jonathan Clough 10/13/03 08:31:18 AM EDT

    I've really benefitted from Fusebox3 and liked the idea of Mach-ii. However the mach-ii site has almost no documentation! Come on guys, if you want the programming community to take up Mach-ii then at least tell us how it works !!

    Sean Corfield 10/01/03 04:53:11 PM EDT

    Mach II does a very good job of abstracting the subtleties of the Implicit Invocation Architecture and the Model View Controller design pattern on which it is based.

    The end result is a well-defined framework that lets you build applications that are easy to maintain and enhance.

    CF Guy 09/15/03 04:14:40 PM EDT

    Whatever you want to. You are not forced to take advantage of the improvements in ColdFusion. While not the optimum usage, CF still has the same ability to be procedural if you like.

    Thomas Hamlin 08/24/03 07:56:10 PM EDT

    Gentlemen,

    The reason I was attracted to Coldfusion, Macromedia and Fusebox was that some of the complexity had been abstracted from what I thought I would need to do. It seems to be going the opposite direction. If I wanted to be a C++ OO programer I would have done that years ago. I want to run a business and be in touch with technology not be a slave to it.

    @ThingsExpo Stories
    The Internet of Things (IoT) is about the digitization of physical assets including sensors, devices, machines, gateways, and the network. It creates possibilities for significant value creation and new revenue generating business models via data democratization and ubiquitous analytics across IoT networks. The explosion of data in all forms in IoT requires a more robust and broader lens in order to enable smarter timely actions and better outcomes. Business operations become the key driver of IoT applications and projects. Business operations, IT, and data scientists need advanced analytics t...
    SYS-CON Events announced today that IceWarp will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IceWarp, the leader of cloud and on-premise messaging, delivers secured email, chat, documents, conferencing and collaboration to today's mobile workforce, all in one unified interface
    A producer of the first smartphones and tablets, presenter Lee M. Williams will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater. In his session at @ThingsExpo, Lee Williams, COO of ETwater, will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater.
    WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
    Consumer IoT applications provide data about the user that just doesn’t exist in traditional PC or mobile web applications. This rich data, or “context,” enables the highly personalized consumer experiences that characterize many consumer IoT apps. This same data is also providing brands with unprecedented insight into how their connected products are being used, while, at the same time, powering highly targeted engagement and marketing opportunities. In his session at @ThingsExpo, Nathan Treloar, President and COO of Bebaio, will explore examples of brands transforming their businesses by t...
    SYS-CON Events announced today that Pythian, a global IT services company specializing in helping companies leverage disruptive technologies to optimize revenue-generating systems, has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Founded in 1997, Pythian is a global IT services company that helps companies compete by adopting disruptive technologies such as cloud, Big Data, advanced analytics, and DevOps to advance innovation and increase agility. Specializing in designing, imple...
    While many app developers are comfortable building apps for the smartphone, there is a whole new world out there. In his session at @ThingsExpo, Narayan Sainaney, Co-founder and CTO of Mojio, will discuss how the business case for connected car apps is growing and, with open platform companies having already done the heavy lifting, there really is no barrier to entry.
    SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
    SYS-CON Events announced today that Micron Technology, Inc., a global leader in advanced semiconductor systems, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Micron’s broad portfolio of high-performance memory technologies – including DRAM, NAND and NOR Flash – is the basis for solid state drives, modules, multichip packages and other system solutions. Backed by more than 35 years of technology leadership, Micron's memory solutions enable the world's most innovative computing, consumer,...
    Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
    As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
    As more and more data is generated from a variety of connected devices, the need to get insights from this data and predict future behavior and trends is increasingly essential for businesses. Real-time stream processing is needed in a variety of different industries such as Manufacturing, Oil and Gas, Automobile, Finance, Online Retail, Smart Grids, and Healthcare. Azure Stream Analytics is a fully managed distributed stream computation service that provides low latency, scalable processing of streaming data in the cloud with an enterprise grade SLA. It features built-in integration with Azur...
    Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
    With the proliferation of connected devices underpinning new Internet of Things systems, Brandon Schulz, Director of Luxoft IoT – Retail, will be looking at the transformation of the retail customer experience in brick and mortar stores in his session at @ThingsExpo. Questions he will address include: Will beacons drop to the wayside like QR codes, or be a proximity-based profit driver? How will the customer experience change in stores of all types when everything can be instrumented and analyzed? As an area of investment, how might a retail company move towards an innovation methodolo...
    Akana has announced the availability of the new Akana Healthcare Solution. The API-driven solution helps healthcare organizations accelerate their transition to being secure, digitally interoperable businesses. It leverages the Health Level Seven International Fast Healthcare Interoperability Resources (HL7 FHIR) standard to enable broader business use of medical data. Akana developed the Healthcare Solution in response to healthcare businesses that want to increase electronic, multi-device access to health records while reducing operating costs and complying with government regulations.
    For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
    The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.
    Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, described how to revolutionize your archit...
    MuleSoft has announced the findings of its 2015 Connectivity Benchmark Report on the adoption and business impact of APIs. The findings suggest traditional businesses are quickly evolving into "composable enterprises" built out of hundreds of connected software services, applications and devices. Most are embracing the Internet of Things (IoT) and microservices technologies like Docker. A majority are integrating wearables, like smart watches, and more than half plan to generate revenue with APIs within the next year.
    Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Opening Keynote at 16th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, d...